101 Essays That Will Change The Way You Think

101 Essays That Will Change The Way You Think

Matematika Soal ada pada gambar!, Jangan lupa isi penjelasan. Terimakasih

Soal ada pada gambar!, Jangan lupa isi penjelasan. Terimakasih

Nilai dari [tex]\displaystyle{ \lim_{x \to 1} \frac{f(x)}{g(x)+x^2-1} }[/tex] adalah D. -1.

PEMBAHASAN

Teorema pada limit adalah sebagai berikut :

[tex](i)~\lim\limits_{x \to c} f(x)=f(c)[/tex]

[tex](ii)~\lim\limits_{x \to c} kf(x)=k\lim\limits_{x \to c} f(x)[/tex]

[tex](iii)~\lim\limits_{x \to c} [f(x)\pm g(x)]=\lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)[/tex]

[tex](iv)~\lim\limits_{x \to c} [f(x)\times g(x)]=\lim\limits_{x \to c} f(x)\times\lim\limits_{x \to c} g(x)[/tex]

[tex](v)~\lim\limits_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim\limits_{x \to c} f(x)}{\lim\limits_{x \to c} g(x)}[/tex]

[tex](vi)~\lim\limits_{x \to c} \left [ f(x) \right ]^n=\left [ \lim\limits_{x \to c} f(x) \right ]^n[/tex]

.

DIKETAHUI

[tex]\displaystyle{ \lim_{x \to 1} \frac{f(x)}{g(x)}=3 }[/tex]

[tex]\displaystyle{ \lim_{x \to 1} \frac{x-1}{g(x)}=-2 }[/tex]

.

DITANYA

Tentukan nilai dari [tex]\displaystyle{ \lim_{x \to 1} \frac{f(x)}{g(x)+x^2-1} }[/tex]

.

PENYELESAIAN

[tex]\displaystyle{ \lim_{x \to 1} \frac{f(x)}{g(x)}=3 }[/tex]

[tex]\displaystyle{\frac{\lim\limits_{x \to 1} f(x)}{\lim\limits_{x \to 1} g(x)}=3 }[/tex]

[tex]\displaystyle{\lim\limits_{x \to 1} f(x)=3\lim\limits_{x \to 1} g(x)~~~...(i) }[/tex]

.

[tex]\displaystyle{ \lim_{x \to 1} \frac{x-1}{g(x)}=-2 }[/tex]

[tex]\displaystyle{\frac{\lim\limits_{x \to 1} (x-1)}{\lim\limits_{x \to 1} g(x)}=-2 }[/tex]

[tex]\displaystyle{\frac{1-1}{g(1)}=-2 }[/tex]

[tex]\displaystyle{\frac{0}{g(1)}\neq -2 }[/tex]

Karena hasil dari substitusi langsung nilainya tidak konsisten, maka dapat kita simpulkan bahwa fungsi g(x) merupakan fungsi yang mempunyai faktor (x-1), bisa kita tulis : [tex]g(x)=H(x)(x-1)~~~...(ii)[/tex]

[tex]\displaystyle{ \lim_{x \to 1} \frac{x-1}{g(x)}=-2 }[/tex]

[tex]\displaystyle{ \lim_{x \to 1} \frac{\cancel{(x-1)}}{H(x)\cancel{(x-1)}}=-2 }[/tex]

[tex]\displaystyle{ \lim_{x \to 1} \frac{1}{H(x)}=-2 }[/tex]

[tex]\displaystyle{\frac{1}{\lim\limits_{x \to 1} H(x)}=-2 }[/tex]

[tex]\displaystyle{\lim\limits_{x \to 1} H(x)=-\frac{1}{2}~~~...(iii) }[/tex]

.

Sehingga :

[tex]\displaystyle{ \lim_{x \to 1} \frac{f(x)}{g(x)+x^2-1} }[/tex]

[tex]\displaystyle{=\lim_{x \to 1} \frac{f(x)}{H(x)(x-1)+(x+1)(x-1)} }[/tex]

[tex]\displaystyle{=\lim_{x \to 1} \frac{f(x)}{(x-1)[H(x)+(x+1)]} }[/tex]

[tex]\displaystyle{=\frac{\lim\limits_{x \to 1} f(x)}{\lim\limits_{x \to 1} (x-1)[H(x)+(x+1)]} }[/tex]

[tex]\displaystyle{=\frac{3\lim\limits_{x \to 1} g(x)}{\lim\limits_{x \to 1} (x-1)[H(x)+(x+1)]} }[/tex]

[tex]\displaystyle{=\frac{3\lim\limits_{x \to 1} H(x)\cancel{(x-1)}}{\lim\limits_{x \to 1} \cancel{(x-1)}[H(x)+(x+1)]} }[/tex]

[tex]\displaystyle{=\frac{3\lim\limits_{x \to 1} H(x)}{\lim\limits_{x \to 1} [H(x)+(x+1)]} }[/tex]

[tex]\displaystyle{=\frac{3\lim\limits_{x \to 1} H(x)}{\lim\limits_{x \to 1} H(x)+\lim\limits_{x \to 1} (x+1)} }[/tex]

[tex]\displaystyle{=\frac{3\times\left ( -\frac{1}{2} \right )}{-\frac{1}{2}+1+1} }[/tex]

[tex]\displaystyle{=\frac{-\frac{3}{2}}{\frac{3}{2}} }[/tex]

[tex]=-1[/tex]

.

KESIMPULAN

Nilai dari [tex]\displaystyle{ \lim_{x \to 1} \frac{f(x)}{g(x)+x^2-1} }[/tex] adalah D. -1.

.

PELAJARI LEBIH LANJUT

  1. Limit fungsi : https://brainly.co.id/tugas/29558741
  2. Limit tak hingga : https://brainly.co.id/tugas/38915286
  3. Limit trigonometri : https://brainly.co.id/tugas/38915095
  4. Limit teorema apit : https://brainly.co.id/tugas/35849860

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi.

Jawab:

limit

[tex]\sf (i). ~lim_{x\to 1}~ \dfrac{f(x)}{g(x)} = 3 , maka f(x) = 3.g(x)[/tex]

[tex]\sf (ii). ~lim_{x\to 1}~ \dfrac{x- 1}{g(x)} = -2[/tex]
x= 1 , bentuk 0/0

[tex]\sf maka ~lim_{x\to 1}~ \dfrac{(x- 1)(x- 3)}{(x-1)} = -2\to g(x) = \dfrac{x-1}{x-3}[/tex]

[tex]\sf f(x)= 3 g(x) = \dfrac{3(x - 1)}{x-3}[/tex]

hasil dari

[tex]\sf ~lim_{x\to 1}~ \dfrac{f(x)}{g(x)+ x^2 - 1} = . .[/tex]

[tex]\sf lim_{x\to 1}~ \dfrac{\frac{3(x-1)}{x-3}}{\frac{x-1}{x-3} + (x-1)(x+1}[/tex]

*kalikan (x- 3)/(x-3)

[tex]\sf lim_{x\to 1}~ \dfrac{3(x -1)}{(x-1)+ (x -1)(x+ 1)(x -3)}[/tex]

[tex]\sf lim_{x\to 1}~ \dfrac{3(x -1)}{(x-1)\{1 + (x+ 1)(x -3)\}}[/tex]

[tex]\sf lim_{x\to 1}~ \dfrac{3}{\{1 + (x+ 1)(x -3)\}}[/tex]

x= 1

[tex]\sf lim_{x\to 1}~ \dfrac{3}{\{1 + (1+ 1)(1 -3)\}}[/tex]

[tex]\sf =\dfrac{3}{1 + 2(-2)} = \dfrac{3}{-3}= -1[/tex]

[answer.2.content]